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ABSTRACT

Hearn, S. and Hendrick, N., 1999. A review of single-station time-domain polarisation analysis
techniques. Journal of Seismic Exploration, 8: 181-202.

Polarisation analysis is arguably the fundamental vector-processing technique applicable to
multi-component reflection data. The single-station, time-domain approach is central to polarisation
analysis and provides the conceptual basis for multi-station and alternative-domain extensions. This
paper rationalises a number of apparently distinct single-station, time-domain algorithms that have
appeared in the literature. A connection between the methods becomes apparent when each algorithm
is approached in terms of optimising a vector test function. For relatively simple test functions,
optimisation leads to an eigenvalue solution of normal equations. More complicated test functions
are optimised using iterative search procedures. A VSP test dataset provides a comparative
illustration of the performance of the various polarisation analysis algorithms examined. Polarisation
parameters computed by the majority of the algorithms are strikingly similar, despite significant
differences in computation approaches. The eigenanalysis method is favoured for standard
polarisation analysis of high-volume datasets envisaged in future multi-component seismic reflection.

KEY WORDS: polarisation analysis, multi-component seismology, VSP.

INTRODUCTION

Multi-component seismic recording has been available to the hydrocarbon
exploration industry for several decades. Processing schemes, however, have
often simply involved application of single-component scalar techniques to each
component individually. There is considerable scope for exploitation of the true
vector nature of these data.
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Triaxial recordings contain a wealth of information on the particle motion
of seismic wave modes, which can ultimately lead to improved understanding
of structural and geological properties of the host rock. The fundamental vector
processing technique is polarisation analysis, the method by which wavefield
particle motion is quantitatively described.

Polarisation analysis of the vector wavefield yields at least three
parameters that define particle motion. Linearity quantifies the degree of linear
alignment of the particle motion, and hence can be used to discriminate between
those waves exhibiting strongly linear particle motion (e.g., isolated
compressional (P), shear (S) or Love waves), and interfering wave types or
waves with elliptical particle motion (e.g., Rayleigh waves). Azimuth and dip
together .describe the direction of particle motion, and can be used in
determining the wave type (e.g., P or S), approach direction of the wave, or
orientation of geological features influencing particle-motion polarisation.

Polarisation analysis has been applied to locate earthquake epicentres
(Archambeau and Flinn, 1965; Archambeau et al., 1966; Magotra et al., 1987;
Ruud et al., 1988), selectively reject unwanted noise events such as ground roll
and out-of-plane energy (Perelberg and Hornbostel, 1994), extract pure P- and
S-wave sections (Perelberg and Hornbostel, 1994; Mu, 1996), and help
characterise reservoirs through S-wave splitting analysis (Crampin, 1985;
Macbeth and Crampin, 1991; Turner and Hearn, 1995; Suthers and Hearn,
1997).

Many of the algorithms for polarisation analysis originate from earthquake
seismology (Shimshoni and Smith, 1964; Flinn, 1965; Archambeau and Flinn,
1965; Montalbetti and Kanasewich, 1970; Samson, 1977; Vidale, 1986; Magotra
et al., 1987), and are primarily applicable to single-station three-component
recordings. The single-station approach has also been productively demonstrated
in exploration and reservoir development environments (Benhama et al., 1988;
Shih et al., 1989; Shieh and Herrmann, 1990; Li and Crampin, 1991; Turner
and Hearn, 1995, Suthers and Hearn, 1997). More recently, polarisation
algorithms have been extended to exploit multi-station geometries (Jurkevics,
1988; Greenhalgh et al., 1990; Cho, 1991; Rutty and Greenhalgh, 1992),
although the full potential of these extensions has yet to be demonstrated on real
data.

The single-station time-domain approach is central to polarisation analysis,
and arguably provides the conceptual basis for extensions that employ multiple
stations and/or alternative domains (e.g., frequency, radon). Consequently it has
received extensive coverage in the geophysical literature. One aim of this paper
is to rationalise a number of the more widely used, and apparently distinct,
algorithms. We do this by examining polarisation analysis algorithms in the
geometric context of optimum positioning of a test vector. This approach
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enables clarification of the relationships that exist between the different
algorithms. In addition, we compare polarisation parameters obtained when the
different algorithms are applied to a real VSP data example.

REVIEW OF METHODS
Overview

In the review to follow we attempt to rationalise a number of the
single-station time-domain polarisation analysis algorithms which have appeared
in the literature. These techniques are categorised in Fig. 1. In general, these
methods estimate ‘average’ particle motion over a specified analysis window.
The unifying approach taken is to consider each of the window methods shown
in Fig. 1 in terms of the optimum positioning of a test vector. Where the test
function is relatively simple, a standard constrained optimisation approach leads
to an eigenvalue solution of normal equations. Where the test function is more
complicated, the resultant simultaneous equations are non-linear, and an iterative
optimisation approach is required.

WINDOW

/\

(INSTANT ANEOUS )

Eigenanalysis
of Covariance
Matrices

Iterative
Test-Function
Optimisation

e Instantaneous Attributes ® Data Covariance Matrix ® Aspect Ratio
@ Error Covariance Matrix ® Energy Maximisation
e Complex Covariance Matrix # Maximum Likelihood

Fig. 1. Categorisation of single-station, time-domain polarisation analysis techniques.
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Instantaneous Method
Instantaneous Attributes

The Instantaneous Attributes approach can be thought of as a trivial case
where the analysis window is reduced to one sample. The formulation of Li and
Crampin (1991) draws an analogy to the complex seismic trace analysis
introduced by Taner et al. (1979), and utilises a complex seismic trace whose
i-th sample is defined by:

fi=x; +jy, = Agl . (D

Here x; and y; are the original horizontal components, and j = 4/—1. A, is
termed instantaneous amplitude, while 8, is termed instantaneous polarisation and
describes particle-motion azimuth. This two-component formulation of Li and
Crampin (1991) can be extended to the vertical plane to allow calculation of an
instantaneous dip:

¢; = tan"'(z/A) . )
Here z; is the vertical component of the seismic data.

Note that this complex-trace formulation of Li and Crampin (1991) is
purely for mathematical convenience. A;, 6, and ¢; are simply the 3-D polar
coordinates of the data point (x;, y;, ;). Obviously, the concept of linearity does
not apply in this case of unit window length.

Window Methods: Eigenanalysis of Covariance Matrices
Data Covariance Matrix (Dot Product Maximisation)

Flinn (1965) first proposed this standard eigenanalysis approach and
variants have subsequently been used by Montalbetti and Kanasewich (1970),
Jurkevics (1988) and Jackson et al. (1991). Commonly this approach has been
presented in terms of multi-variate statistics, whereby the dependencies between

data coordinates (X;, y;, z;) are analysed through examination of the covariance
matrix

x? Xy Xz

Yix; y? YiZi , 3)

=
I
1=

Z;X; Zy; z?
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where the summation is over the N samples in the data analysis window. The
technique of Principle Component Analysis allows this matrix to be decomposed
into a sum of three terms, constructed from three orthogonal eigenvectors (u,
u,, U,), namely:

M = Nuui + Muul + Augul 4)

where T denotes the vector transpose. These eigenvectors and their
corresponding eigenvalues (A\,, A,, A;) essentially define the axes of the
particle-motion ellipsoid, and can be obtained as the three solutions to the
characteristic equation:

Mu = \u . &)

The contribution of each term in Equation (4) is indicated by the
magnitude of the associated eigenvalue. For the purposes of this paper let us
define N, > N, > A;. Then for highly linear particle motion the observed
covariance matrix is dominated by the large eigenvalue ()\,), and the
corresponding eigenvector [w;, = (I;, m,, n;)] represents the prevailing
particle-motion orientation. For more elliptical motion the eigenvalues are closer
in magnitude.

A quantitative estimate of particle-motion linearity (L) within the analysis
window is:

L=1-Q0/\) . ©)

L will always lie between 0 and 1, where O represents extremely poor linearity
and 1 indicates perfectly linear particle motion. The power +y controls the
sensitivity of this linearity estimator as detailed in Hendrick and Hearn (1998).
A value of ¥y = 0.5 is used in the examples to follow. The orientation of
particle motion is specified by the azimuth:

6 = tan"'(m,/1,) , N
and dip:
o = tan"'[n,/A/(} + m}) . 8)

Note that the technique given in Montalbetti and Kanasewich (1970)
modifies the above expression for the data covariance matrix (Equation (3)) by
subtracting the window mean from each seismic component before computing
the covariances. This approach, which we refer to as the Debiased Data
Covariance Matrix method, tends to force particle motion closer to the origin.
Results generated via this modified approach are discussed below.
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As an alternative to the statistically based derivation above, the eigenvalue
formulation can also be derived from geometric considerations. This alternative
perspective is particularly valuable in terms of relating the Data Covariance
Matrix method to other polarisation analysis approaches. In brief, we attempt
to find a unit vector u = (/, m, n) which is optimally aligned with the data
vectors d, = (X;, ¥;, Z;) over the analysis window. Since the dot product of two
vectors represents the projection of one onto the other, this optimisation can be
achieved by maximising the test function:

F= Z: d - w2 . ©)

Differentiation of this test function with respect to /, m and n, and
imposition of the constraint 2 + m? + n? = 1 via the method of Lagrange
multipliers, leads directly to the characteristic equation given by Equation (5).

In this geometric context the three solutions to Equation (5) correspond
to test vectors for which the above test function is a maximum (and
corresponding eigenvalue is maximum), a minimum (and corresponding
eigenvalue is minimum), and an inflection point (for which the eigenvalue is the
median).

Error Covariance Matrix (Cross Product Minimisation)

An interesting approach that can be considered ‘complementary’ to the
preceding standard covariance matrix method was conceived by Madariaga
(1967), and utilised by Mu (1996) and Suthers and Hearn (1997). By analogy
with the geometric interpretation of the Data Covariance Matrix method, this
technique can be thought of in terms of finding a unit vector for which the
perpendicular distance to the data points is minimised, in a least-squares sense,
over the analysis window. This is achieved by minimising the test function:

N
F=Y|d Xul? . (10)

i=1
Differentiation of this test function with respect to /, m and n, and
imposition of the constraint /2 + m2 + n? = 1 via the method of Lagrange
multipliers leads directly to the characteristic equation:
Mgu=A\u, (11)

where
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y?‘f' Z? —X¥; —XiZ;
N
M; = E —-yiXi  xitzd  —yiz - (12)
i=1
—ZX; -zy; Xx}+y?

We refer to this matrix as the Error Covariance Matrix. It is related to the
standard Data Covariance Matrix (M) via:

M,=PI-M , (13)

N
where P = E (x? + y? + z?) is the total energy in the window,

i=1

and I is the identity matrix.

In terms of solutions to Equation (11), the largest eigenvalue (A;), and
corresponding eigenvector [u; = (/;, m;, n;)] is associated with the greatest
component of error in the observed covariances. Conversely, the smallest
eigenvalue (\,) and the corresponding eigenvector [u; = (f;, m,;, n,)] is
associated with the principal axis of the particle-motion ellipsoid.

In this case a measure of particle-motion linearity is given by:
L=1-=-0MN\) . (14)

Again we typically use a power of 4 = 0.5. The azimuth and dip of particle
motion are computed using equations analogous to Equations (7) and (8), except
that the appropriate eigenvector coordinates are now (/;, m;, ny).

Complex Covariance Matrix

The Complex Covariance Matrix approach, proposed by Vidale (1986),
is an extension of the standard Data Covariance Matrix method described above.
As in the standard derivation, this approach can be geometrically related to dot
product maximisation. Vidale (1986) converts the three-component seismogram
(X;, ¥i, Z;) to a complex signal having components:

Xi =X + _]H{X,}
Y, =y + jH{yi} , (15)
Z, = z; + jH{z;}

where H{} represents the Hilbert Transform and j v/—1.
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The Complex Covariance Matrix is then computed via:

[ xXX; XY Xz

a

I
o8

<

ol

Il
—

i Y)Y: YZi . (16)

ZX; Y ZZi

where the asterisks represent complex conjugation.

Again, the largest eigenvalue, and the corresponding complex eigenvector,
define the principal axis of the particle-motion ellipsoid. Thus linearity can be
estimated via Equation (6). Azimuth and dip of particle motion can be
determined by equations analogous to Equations (7) and (8), except that only the
real part of each eigenvector component is used.

One advantage of the Complex Covariance Matrix method, as claimed by
Vidale (1986), is the stabilisation of particle motion at each point along the
complex seismic trace. This is achieved via the Hilbert Transform procedure,
which essentially imposes a quarter-cycle smoothing on the data. The effect of
this smoothing is demonstrated in the real data example given below.

Window Methods: Iterative Test-Function Optimisation

In the previous section the vector algebraic test functions are relatively
simple, and standard constrained optimisation techniques lead to an eigenvalue
solution of normal equations. The techniques to follow involve more
complicated test functions, resulting in non-linear simultaneous equations. The

test functions are more appropriately optimised using iterative search
procedures.

Aspect Ratio

In the original two-component formulation of Shih et al. (1989), the
Aspect Ratio method was restricted to the estimation of the dominant azimuth
of particle motion, for analysis of shear-wave splitting. A scan is performed
over the range of test azimuths from 0° to 180° in order to maximise the
so-called aspect ratio:

N

N
Rk = E S-,|COS:91K| lr E SiISinﬂikl , (17)
i=1

i=1

where
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N is the number of samples in the analysis window,
i = Vi — ¥ + (x4 — x)4,
O = o — ¥,

¥ = tan [y — ¥/ (Xisr — X)I-

That is, s; is the horizontal particle-motion displacement between time
samples i and i+1, and 6, is the angle between the k-th test azimuth «,, and the
particle-motion direction ;. The aspect ratio R, reaches a maximum when the
test azimuth best corresponds to the true orientation of particle motion, over all
samples in the analysis window. '

This original formulation can be conveniently generalised to handle a full
three-component polarisation analysis by introducing vector notation. This also
helps clarify the relationship between the Aspect Ratio method and the other
techniques discussed above. Generalisation of Equation (17) leads to the vector
test function:

N N
F=Y|d ul/Y|dxXul| . (18)
im1 i=1

Note that, for consistency with the methods discussed previously, the
vector position of the i-th data point d; has been used in Equation (18). In terms
of the original Aspect Ratio definition of Shih et al. (1989), s; represents the
displacement vector between the points i and i+1. This distinction will be
further considered in the discussion below.

The test function given in Equation (18) is more complicated than those
arising in the covariance matrix methods, and does not lend itself to an
eigenanalysis solution. The required maximum can be found by iterative rotation
of the test vector u in a three-dimensional sense. Note that this approach is
extremely time consuming and an approximate solution is achieved more
efficiently using a two-stage search procedure. The first stage locates the
optimum u vector in the horizontal plane (say uy). The second stage of the
search is then restricted to the vertical plane containing uy. Both the single-stage
and two-stage approaches have been applied to the real data example.

Once the optimum u vector is determined in three-dimensional space, the
particle-motion azimuth and dip can be obtained via equations analogous to
Equations (7) and (8). A reasonable linearity estimate is provided by:

L=1-(/F,) , (19)
where F,, is the test function maximum for the analysis window. A power 7y

= 0.5 provides linearity estimates comparable to other methods, as illustrated
below.
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Energy Maximisation

This concept originates from the mathematical procedure used to orientate
the horizontal geophones of three-component vertical seismic profiles (VSP’s),
in cases where an orientation device is not incorporated into the recording tool.
Turner and Hearn (1995) applied the same idea to analysis of S-wave
polarisation azimuths. In their two-component application a scan is performed
through the range of possible azimuths. The recorded horizontal data are
resolved onto two axes parallel and perpendicular to each test azimuth. The
azimuth of dominant particle motion is taken as that for which the ratio of
parallel to perpendicular energy is maximised over the analysis window.
Generalisation of this criterion to three components using the vector notation
introduced above leads to the test function:

N N
F=)|d ul2/) |d Xul? . (20)
i=1 i=1

As for the generalised Aspect Ratio approach d; is the vector position of
the i-th data point, and the optimum test vector u is found via either a one- or
two-stage iterative procedure. Azimuth and dip are interpreted from the
components of the vector u using Equations (7) and (8). Linearity is estimated
from the maximum value of the test function within each window, using
Equation (19).

Maximum Likelihood

A somewhat different approach to estimating polarisation parameters is
provided by the Maximum Likelihood estimator, as used by Christofferson et
al. (1988) and Roberts and Christofferson (1990). In the context of determining
the polarisation of an isolated seismic event, the technique attempts to find a
vector u that is optimally aligned with data vectors d; over an analysis window.
In contrast to the relatively simple geometric test functions developed above, the
Maximum Likelihood criterion corresponds to minimisation of the test function
(Christofferson, personal communication):

F =log|U| + r(MU™") — log|M| — 3 . 21)

Note that typographic errors occur in the original papers - Equation (5)
of Christofferson et al. (1988) and Equation (32) of Roberts and Christofferson
(1990).

In Equation (21), ‘tr’ represents the trace of the matrix and M is the data
covariance matrix defined in Equation (3). U is termed the Model Covariance
Matrix, whose general form is given by Equation (2) of Christofferson et al.
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(1988). In our implementation we have assumed uncorrelated, equal noise
energy on all three components. Under these assumptions the model covariance
matrix takes the form:

r -
PEg+Ey/3 ImE; InE;
U= [mEs mZES + ENJIF3 mnEs . (22)
InEg mnEg n?Eg+Ey/3

Here (/, m, n) are the components of the test vector u. Eg and Ey are the signal
and noise energies, respectively, in the analysis window. We obtain these
quantities by computing the total energy in the analysis window:

N
E=) (¢ +y}+2) =E +Ey , 23)
i=1
and assuming a percentage relationship between noise and signal energies. For
the examples presented below, an assumed noise percentage in the range of
0.01% to 0.1% produces a robust solution.

As is the case with the Aspect Ratio and Energy Maximisation
approaches, the optimisation of the Maximum Likelihood test function (Equation
(21)) is most appropriately carried out using an iterative search procedure.

Again, a two-stage search provides an acceptable approximation to the full
three-dimensional scan.

Azimuth and dip are interpreted from the components of the optimum test
vector using Equations (7) and (8). Our tests suggest that a reasonable linearity
estimate is provided by:

L = (Frw/Fai)” » (24)

where F_;, is the minimised test function value for the current analysis window,
and F,;, is the global minimum obtained over all analysis windows. For the real
data example included below a sensitivity factor y = 0.5 yields a linearity curve
broadly comparable to the other methods.

COMPARATIVE EXAMPLE
Multi-Component VSP Test Dataset

The multi-component test dataset used to compare polarisation analysis
techniques is the Namgib-1 VSP from the eastern Otway Basin, southeast
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Australia. These data were acquired with a dynamite source, in drilled holes
offset approximately 75 m from the wellhead. Fifty-three levels were acquired
over the depth interval 1375 m(KB) to 290 m(KB). A total record length of 2.0
s was recorded for each VSP level, using a sample interval of 2.0 ms.

Preprocessing prior to polarisation analysis is aimed at improving the
signal-to-noise ratio without distorting relative particle motion. A minimal VSP
processing sequence has been used on the Namgib-1 VSP, incorporating only
horizontal geophone component orientation, band-pass filtering, shot balancing
and a first-break mute. A more detailed explanation of these processes is given
in Turner (1994) and Turner and Hearn (1995). Fig. 2 shows the vertical,
ifi-line and cross-line components of the preprocessed VSP data. The direct
P-wave dominates the vertical record (around 0.6 s on Level 1). The weaker
downgoing events on the vertical component (0.9 s and 1.2 s on Level 1) are
consistent with source-related reverberations. The dominant event on the
horizontal components (1.6 s on Level 1) is interpreted as a direct S-wave,
possibly generated by P-SV conversion at or near the surface. The weaker band
of horizontal energy (around 1.1 s on Level 1) is consistent with a P-S
conversion occurring around 300 m depth (i.e., near Level 53).

Overview of Polarisation Parameters

In order to help clarify the overall relationships that exist between these
three-component seismic data and their polarisation parameters, Fig. 3 shows
the computed linearity, dip, azimuth reliability measure (defined below) and
azimuth for the entire Namgib-1 VSP data set. These polarisation parameters
have been generated using the Data Covariance Matrix method. All results
presented here have been computed using an analy3is window of 50 ms.

As noted above, linearity lies in the range of 0 to 1, where 1 is
representative of perfectly linear particle motion. Thus coherent, high linearity
events are indicative of seismic body waves. In Fig. 3(a) the direct arrival
P-wave has extremely high linearity as expected. In addition, a coherent band
of high linearity is associated with the interpreted direct S-wave (1.6 s on Level
1). There is also evidence of high linearity associated with the weaker P- and
S-events identified on Fig. 2.

Estimates of particle-motion dip should be examined in the light of the
corresponding linearity estimates. Obviously the concept of dip is most
meaningful for highly linear particle motion. When linearity is low, computed
dip angles have reduced physical significance. With this consideration, the dip
plot of Fig. 3(b) can be meaningfully related to the associated seismic data (Fig.
2). The obvious zone of high dips (light shading) indicates dominance of P-wave
energy. As expected an abrupt change to low dip follows the arrival of the
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direct S-wave. In addition, the band of low dips terminating at about 1.1 s on

Level 1 reinforces the interpretation of a secondary P-S conversion mentioned
above.

Just as dip estimates should be considered in conjunction with linearity,
computed particle-motion azimuths should be interpreted in association with both
linearity and dip. Azimuth estimates will be most reliable if linearity is high,
and if the horizontal components of particle motion are significant (that is, dip
is low). Fig. 3(c) shows an azimuth reliability measure (p) computed as a
function of linearity (L) and dip (¢), namely:

p = Lcosg . (25)

This approaches unity for events having linearity equal to one or dip equal
to zero, and approaches zero when linearity is zero or dip is 90°. Examination
of Figs. 3(c) and 3(d) demonstrates that the most reliable azimuths are
associated with the various S-wave events identified above. The most coherent
band is associated with the direct S-wave (1.6 s on Level 1). These azimuth
estimates (Fig. 3(d)) have been used elsewhere (Turner and Hearn, 1995) to
examine S-wave splitting.
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Fig. 2. Preprocessed seismic data for Namgib-1 VSP: (a) vertical, (b) in-line and (c) cross-line
components. Level 1 is at 1375 m (KB) and level 53 is at 290 m (KB).
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Fig. 3. Polarisation parameters for Namgib-1 VSP: (a) linearity (range of 0 to 1 on each trace); (b)
particle-motion dip (°); (c) azimuth reliability measure (range of 0 to 1 on each trace) and (d)
particle-motion azimuth (°). Note that here, and in subsequent figures, polarisation analysis
commences at the P-wave onset, since the input data have had a first-break mute applied. The
grey-scale plotting system used for dip and azimuth allows for meaningful interpretation over the
range of possible angles.
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Comparison of Polarisation Algorithms

Having illustrated the broad relationships that exist between the
three-component data and polarisation parameters, we now compare the
polarisation estimates produced by each of the algorithms discussed above. To
facilitate this more detailed comparison we will concentrate on a single
representative VSP level. The three-component data for Level 39 (702 m (KB))
are shown in Fig. 4. The direct P-wave is at 0.35 s, and the interpreted S-wave
is at about 1.1 s. Comparison with Fig. 2 suggests that the strong energy around
0.7 s is the net effect of downgoing P-wave energy related to source
reverberation, and upgoing (reflected) P-wave energy.

Fig. 5 compares the linearity estimates from the different polarisation
analysis algorithms, for the section of the trace commencing at the direct
P-wave onset. There is striking consistency across the methods. This lends
credibility to the overall linearity interpretation, which confirms high linearity
for the P- and S-wave arrivals (at 0.35 s and 1.1 s, respectively), as well as for
the strong event noted at 0.7 s. Note that the Complex Covariance estimate
(Fig. 5(d)) is somewhat smoother than the other estimates. As previously
mentioned, this is intuitively related to the Hilbert Transform construction of the
complex seismic trace. The reduced linearities at the onset of the Maximum
Likelihood estimate (Fig. 5(g)) are an edge effect of the first-break mute zone.

(a) (b) (©)

LES

0.6+

Time (5)

Fig. 4. Preprocessed seismic data for Level 39 (702 m (KB)), Namgib-1 VSP: (a) vertical, (b)
in-line and (c) cross-line components.
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Fig. 5. Comparison of particle-motion linearity estimates for Level 39, Namgib-1 VSP computed
via (a) Data Covariance Matrix, (b) Debiased Data Covariance Matrix, (c) Error Covariance Matrix,
(d) Complex Covariance Matrix, (e) Aspect Ratio, (f) Energy Maximisation, and (g) Maximum
Likelihood. On each plot, the vertical axis is linearity ranging from 0 to 1.
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Fig. 6 compares estimates of particle-motion dip generated by the
different algorithms. The reference plot of linearity (Fig. 6(a)) is included as a
guide to the reliability of the dip estimates at different points along the trace. All
of the window methods (Figs. 6(c)-6(i)) produce reasonably consistent dip
estimates, particularly in regions of high linearity. As observed previously, these
dip measurements generally indicate that the trace is dominated by near vertical
P-wave energy up until the arrival of the S-wave, after which the energy is
predominantly near-horizontal. As would be expected the dip angles computed
via the Instantaneous Attributes approach (Fig. 6(b)) are comparatively unstable.
Dip values oscillate at the dominant period of the data, effectively mirroring the
alternating orientations of the particle-motion vector d;. Hence even for highly
linear arrivals, the instantaneous dips will tend to be correct only at the
extremities of particle motion (twice in any given cycle), and up to 90° in error
at other points in the cycle. Again note that the Complex Covariance method
shows some smoothing of results (Fig. 6(f)). Additionally, it yields one zone of
conflicting dip around 0.5 s.

Estimates of particle-motion azimuth are compared in Fig. 7. The azimuth
reliability measure (Fig. 7(a)) indicates that azimuth estimates are generally
unreliable prior to the S-wave arrival at 1.1 s, Beyond this time all window
methods (Figs. 7(c)-(i)) produce consistent, stable azimuth measurements, with
the Complex Covariance method (Fig. 7(f)) again showing slightly smoothed
results. Even where the reliability measure is low, a number of the methods
exhibit similar azimuth measurements. This merely indicates that the different
algorithms respond to noise in a similar fashion. Note that the azimuth angles
computed using the Instantaneous Attributes approach (Fig. 7(b)) again oscillate
at the dominant data period.

Note that in Figs. 5, 6 and 7 the Aspect Ratio, Energy Maximisation and
Maximum Likelihood results have been generated using the one-stage (full
three-dimensional scan) approach. Although not shown, results obtained using
the two-stage approximation for these methods are very similar.

DISCUSSION

The primary aims of this paper have been to clarify the relationships that
exist between a number of single-station time-domain polarisation analysis
algorithms, and to compare the results of applying these various approaches to
a real data example. At first glance the array of polarisation analysis techniques
examined appear to have quite distinct approaches. However, the relationships
between methods can be clarified if they are considered in terms of optimum
positioning of a test vector with respect to the data vector, in a given analysis
window. The differences between algorithms then relate directly to the different
test functions used in the optimisation.
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Fig. 6. Comparison of particle-motion dip estimates (°) for Level 39, Namgib-1 VSP. (a) Linearity
(range of 0 to 1) indicates the reliability of dips computed via (b) Instantaneous Attributes, (¢) Data
Covariance Matrix, (d) Debiased Data Covariance Matrix, (e) Error Covariance Matrix, (f) Complex
Covariance Matrix, (g) Aspect Ratio, (h) Energy Maximisation, and (i) Maximum Likelihood.
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Azimuth (°)

Fig. 7. Comparison of particle-motion azimuth estimates (°) for Level 39, Namgib-1 VSP. (a)
Azimuth reliability measure (range of O to 1) indicates reliability of azimuths computed via (b)
Instantaneous Attributes, (c) Data Covariance Matrix, (d) Debiased Data Covariance Matrix, (e)

Error Covariance Matrix, (f) Complex Covariance Matrix, (g) Aspect Ratio, (h) Energy
Maximisation, and (i) Maximum Likelihood.
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As pre-empted above, a clarifying comment is warranted in relation to the
usage of the data vector d, = (x;, y;, z) which occurs in the various test
functions. For the real data results presented above, each algorithm was
implemented using d;, the absolute position vector of the i-th data point. As
indicated in the discussion of the Aspect Ratio method, an alternative approach
would be to use the vector s,, the displacement vector between data points i and
i+ 1. For perfectly linear motion through the origin both approaches would yield
the same results. However, when particle motion is not through the origin, the
former approach would yield good orientation estimates at the extremities of
particle motion, and less accurate estimates for data points closer to the origin.
Conversely, the displacement interpretation would yield poorer estimates near
the extremities of particle motion. It is interesting to note that, for the test data
set used here the two interpretations yield virtually identical results. This
observation is consistent with the fact that the Debiased Data Covariance Matrix
method, which essentially attempts to force particle motion through the origin,
yields very similar parameters to the other covariance matrix approaches (Figs.
5, 6 and 7).

Perhaps the most reassuring aspect of the study is that the different
algorithms have produced very similar estimates of polarisation parameters when
trialed on real VSP data. One exception has been the results from the
Instantaneous Attributes approach, which understandably produces oscillatory
estimates. The Complex Covariance method, on the other hand, appears capable
of providing increased stability, and may prove particularly useful where
window lengths need to be kept short,

Table 1. Relative compute-times for each of the single-station time-domain polarisation analysis
techniques examined.

Relative

Polarisation Analysis Technique Compute-Times

Instantaneous Attributes 1
Data Covariance Matrix 2

Error Covariance Matrix

Complex Covariance Matrix 10

2-Stage Aspect Ratio 205
1-Stage Aspect Ratio 7000
2-Stage Energy Maximisation 214
1-Stage Energy Maximisation 7800
2-Stage Maximum Likelihood 340

1-Stage Maximum Likelihood 12000
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Finally, we comment on computational requirements of the different
approaches. Table 1 presents the relative compute-times for each of the
techniques examined. For the iterative search procedures we have used a scan
increment of 1°, and have included times for both the one-stage approach (full
three-dimensional scan) and the two-stage approximation. As would be expected,
the eigenanalysis methods run considerably faster than the iterative approaches.

It should be noted that the generalised Maximum Likelihood procedure,
as implemented by Christofferson et al. (1988), provides some additional
theoretical functionality over the other methods described here (e.g., the ability
to handle multiple seismic events in a window and the provision of a
‘probability estimate’ for a particular wave type). However, for the standard
polarisation analysis problem being considered, the eigenanalysis approach is
highly favoured. This is particularly so where high-volume data sets are
envisaged. This will be the case when polarisation techniques become integrated
into standard surface reflection processing.
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