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INTRODUCTION

A fundamental objective of deconvolution is to simplify the
reflection package arising at each subsurface interface. Ideally
each interface should be represented by a single spike of energy,
since this provides optimum resolution of closely spaced
horizons.

Short-gap predictive deconvolution is widely treated as a default
technique for such wavelet compression.  The attractiveness of
the method is perhaps due to its ease of use, which relies on a
number of inherent assumptions (e.g. Robinson and Treitel,
1980).  Firstly, the performance of the deconvolution filter is

optimised if the inherent wavelet is minimum delay.
Additionally, it is assumed that the overall trace autocorrelation
provides an acceptable estimate of the wavelet autocorrelation.
This latter requirement is reasonable in geological situations
with a significant number of reflecting horizons, of varying
contrasts, positioned randomly in depth. A number of well-log
analyses have demonstrated that this so called ‘ random-
reflectivity’  assumption is violated in many real situations (e.g.
Walden and Hosken, 1985; Phythian et al., 1995). In particular,
the assumption may be seriously compromised where the
geology comprises a small number of dominant reflecting
horizons, as is common in coal environments. Under such
circumstances, predictive deconvolution may perform poorly as
a wavelet compression tool.

MODEL-BASED DECONVOLUTION

We use the term ‘model-based deconvolution’  generally to
describe any deconvolution algorithm which is based on
assumptions which are more directly relevant to the specific
geology of interest. In this paper we give one simple example of
the approach, aimed at imaging a production coal-seam, of
thickness 5-10m, at a mine in the Bowen Basin, Australia.
Broadly speaking, we exploit a priori knowledge of the
dominant-seam geology which causes problems with the
conventional predictive approach.

Using basic z-transform concepts (e.g. Robinson and Treitel,
1980), the impulse response of a single layer can be written as:

F(z)  =   ( c1 + c2  z 
δτ  )  /  ( 1 +   c1 c2  z 

δτ  )           (1)

where c1  and  c2  are the reflection coefficients at the top and
bottom interfaces respectively, and δτ  is the two-way time
thickness in the layer.  This expression incorporates the full
filtering effect of the layer, including the primary reflections
from the top and base of seam, and all internal multiples. The
full seismic reflection package produced by the layer is then
given by P(z) = F(z)W(z) where W(z) is the intrinsic seismic
wavelet.

In our deconvolution procedure, an estimate of the seismic
reflection package, P(z), associated with the target seam is
obtained on a shot-by-shot basis.  This is done by automatic
event alignment and stacking. The intrinsic seismic wavelet can
then be recovered as W(z) = P(z) [ F(z) ]-1.  In practice, we
generally achieve best results using a Wiener estimate of
[ F(z) ]-1, rather than using the exact inverse of Equation (1).
Physically, this wavelet-estimation stage can be thought of as
removal of the base of seam reflector, and all interbed multiples,
leaving only the top-of-seam reflection.

SUMMARY

Predictive deconvolution is widely treated as a universally
applicable tool for multiple removal and wavelet
compression. The fundamental assumption of random
reflectivity is seriously compromised in geological
situations where the reflection sequence comprises a small
number of dominant horizons. This situation is not
uncommon in coal environments.

Where the primary seismic objective is high quality
imaging of particular target horizons, an improved result
can be achieved if the deconvolution is designed according
to assumptions more relevant to the geological situation.
We outline a simple example of this approach, aimed at
imaging a production coal seam, of thickness 5-10 m, at a
mine in the Bowen Basin, Australia.

Using horizon time picks from a preliminary volume, the
full reflection package associated with the seam is
extracted and deterministically filtered to obtain an
estimate of the intrinsic wavelet.  A Wiener spiking filter,
designed on the extracted wavelet, is then used to
deconvolve the seam package.

In comparison to the predictive deconvolution approach,
this model-based procedure provides improved resolution
of the top and base coal interfaces.  In addition, derived
amplitude and frequency attributes are more robust in terms
of known geology.  Variants of this simple model-based
procedure should have relevance in a range of dominant-
horizon situations where predictive deconvolution is
invalid.
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Next a Wiener spiking filter is derived for the estimated
wavelet, and this filter is applied to all traces in the shot gather.
This stage effectively converts the seam reflection package to
the spike series defined by F(z). Note that the wavelet spiking
operator designed on this target seam can reasonably also be
applied throughout the trace

Finally, it seems theoretically desirable to eliminate intrabed
multiples, to yield an image comprising only spiked top and base
primary reflections. One approach is to design a Wiener filter to
convert the layer-response function F(z) to the corresponding
multiples-only response. The multiple sequence so derived is
then subtracted.  Note that this filter is only  applicable to the
design seam, and not to the whole trace.  In practice we have
found that this final step provides minimal adjustment,
confirming that the interference effects of interbed multiples are
of second-order influence, compared to the interaction between
the top and base seam events.  In the initial real-data trials
below we have not included this correction.

Figure 1 confirms the mechanics of the algorithm for a simple
synthetic example. Figure 1(a) shows an assumed source
wavelet, based on a real shot-record extraction.  Figure 1(b)
shows the total interference package arising at a seam having
two-way time thickness of 6 ms.  Figure 1(c) shows the output
of the wavelet-estimation stage.  This compares well with the
starting wavelet of Figure 1(a). A Wiener spiking filter is
designed on this wavelet, and applied to the composite of Figure
1(b). As is desirable, the output image (Figure 1(d)) is
characterised by a peak corresponding to the top of seam,
followed by a trough corresponding to the base of seam.  The
time positions of the peak and trough correspond well with the
input model.

For comparison, Figure 1(e) shows the result of applying a
conventional spiking deconvolution to the composite interference
package of Figure 1(b). The predictive deconvolution has not
provided any simplification of the reflection package. There is
some spurious peak splitting due to instability in the derived
filter.

Figure 1.  Synthetic illustration of model-based
deconvolution:   (a)  source wavelet based on real data; (b)
composite reflection package produced by a seam with a
two-way time thickness of 6 ms;  (c) wavelet estimate
obtained by inverse filtering; (d) output trace obtained by
model-based deconvolution of the composite in (b); and (e)
output  trace obtained by spiking predictive deconvolution
of the composite in (b).

ESTIMATION OF MODEL PARAMETERS

As noted above, the model-based approach requires some a
priori information relating to the target geology. Firstly,
Equation (1) indicates that estimates are  required of  the
reflection coefficients at the top and base of the target seam.
Consideration of the expansion of  F(z) reveals that the ratio
c1 / c2 is of greater significance than the coefficients themselves.
In any event, synthetic analyses suggest that the deconvolution
output is relatively insensitive to this ratio. In practice, we have
estimated the coefficient ratio from available sonic and density
logs. For the real data examples to follow the parameter has
been kept constant.  There is not a significant change in the
output as this ratio is allowed to vary across a reasonable range.

The procedure is much more sensitive to the assumed time-
thickness (δτ) of the seam, and this parameter must be allowed
to vary across the survey area.  We have considered a number
of approaches to estimating this time-thickness.  Figure 2
illustrates an  automated procedure referred to here as the
relaxation-time approach, which monitors the compression
achieved by the deconvolution as the assumed time-thickness is
varied. The optimum time-thickness is assumed to yield the
most compressed wavelet, as manifested by a minimum in the
relaxation time.  Figure 2 includes a synthetic example
illustrating straightforward estimation of time thickness, and a
real-data example where there is some ambiguity associated
with multiple minima.

Figure 2. Illustration of relaxation-time analysis for
estimation of two-way time thickness of bed.  The relaxation
time, plotted on the vertical axis, is the time taken for the
wavelet partial energy to reach a fixed percentage (typically
90%) of the total energy.   For the  synthetic example (a),
the input model time-thickness was correctly estimated by
the clear minimum at 6 ms.  For the real data example (b),
well logs indicate that the true thickness corresponds to the
smaller minimum around 6.5 ms.

The relaxation-time method has potential for fully automated
operation on large volume data sets.  For the present trial,
however, we have restricted ourselves to a more conservative
manual approach, whereby we visually examine a panel of
deconvolved data, corresponding to a range of assumed time-
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thicknesses, at regular locations across the volume. The
preferred time-thickness is that which produces best definition
on the seam, and least noise generation.  This approach is
analogous to the panel approach used elsewhere in seismic
processing (e.g. filter panels, velocity analysis).

REAL-DATA EXAMPLE

Figure 3(a) shows one receiver-line from a representative 3D
shot record, with no deconvolution applied. Polarity
considerations imply that the top of seam correlates to the start
of the first  peak as indicated by the red arrow.  This small peak
is followed by a  stronger trough and peak combination. Figure
3(b) shows the same data following conventional predictive
deconvolution.   Predictive deconvolution has sharpened each
peak or trough, but it has not effectively reduced the overall
complexity of the seam reflection package.  In this particular
case there is some evidence that the initial onset has in fact been
made more complex.  It is not possible to track the true top-of-
seam reflector, although the seam can be structurally mapped by
tracking the following trough. Figure 3(c) shows the same data
following application of the model-based deconvolution
procedure.  There is considerable simplification of the reflection
package.  The dominant peak is now more reliably indicative of
the top of seam, while the following trough should more closely
relate to base of seam.

The comparative evaluation has been extended to a full 3D test
volume.  As noted above, in the predictive deconvolution volume
the target seam can be effectively tracked on the trough
following the true top-of-seam event.  Hence, from the point of
view of structural mapping, there is no compelling advantage in
the new procedure volume.  However, for more advanced
stratigraphic and quantitative analyses, the model-based volume
is considered to provide a more accurate image, since its
assumptions are theoretically more defensible. On the target coal
seam, definition of the top and base of seam is considerably
improved.  The improved accuracy of the image is most obvious
in various attribute analyses.  Figure 4 gives a representative
example, where a peak-frequency image of the target seam is
displayed for the predictive and  model-based deconvolution
volumes. On the predictive deconvolution volume (Figure 4(a))
the zones of spuriously high frequency (blue colour) toward the
bottom left and right of the figure are difficult to reconcile with
known geology. On the other hand, the peak frequencies derived
on the model-based volume (Figure 4(b)), are more robust, and
can be accurately related to known seam thickness, via tuning
arguments (Parker, 2002). Associated attributes (instantaneous
frequency, phase) also show greater reliability for the model-
based volume.

CONCLUSIONS

Predictive deconvolution is based on certain assumptions which
may not be valid in the context of coal seismic reflection.
Consequently the conventional technique may not be effective in
defining boundaries of relatively thin seams. On the other hand,
the model-based algorithm exploits the simplicity of the coal-
seam geology, and yields an image with improved definition of
the top and base of seam. The model-based procedure requires
greater manual intervention than the conventional predictive
approach, and requires estimates of seam parameters, most
importantly the seam time-thickness. In this trial, thickness was
successfully estimated  using a simple visual panelling approach.

Figure 3. Test data from a single receiver line of a
representative 3D shot record. In each image the vertical
axis is time in seconds.  The approximate top of the
production coal seam is indicated by the red arrow.
(a) raw data;  (b) conventional spiking predictive
deconvolution;  (c) model-based deconvolution.
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In the predictive deconvolution volume, the target seam can be
tracked effectively using a trough following the actual top-of-
seam peak. Hence, for simple structural mapping there is no
compelling argument in favour of the new algorithm.  However,
for more advanced stratigraphic and quantitative analyses, the
model-based volume is considered to provide a more accurate
image.  Frequency and amplitude attribute images display
improved robustness with respect to known geology.  In
addition, the algorithm should be more amenable to amplitude-
sensitive procedures such as impedance inversion. Variants of
this simple model-based procedure should have relevance in a
range of dominant-horizon situations where predictive
deconvolution is invalid.

Figure 4.  Peak frequency attribute map for (a) predictive
deconvolution volume, and (b) model-based deconvolution
volume.   The analysis was performed using a 30 ms window
optimally positioned over the target horizons.
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