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Many Shot Records

Real seismic exploration

Seismic 
Processing

Stacked Image
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“Acquisition Modelling”
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shot records
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Acquisition modelling example
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Barren-zone modelling
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Barren-zone modelling
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Seismic source modelling



Vibroseis  (10-200 Hz)



Vibroseis  (10-250 Hz)



Vibroseis  (10-350 Hz)



Dynamite



Dynamite



Acquisition modelling as an 
interpretational aid



Model 1 – Geological model



Model 1 – Finite Difference Record



Model 1 –  Processed Section





Thursday 11am

Seismic Geophysics B

Shaun Strong

Applications of finite-difference modelling 
to coal-scale seismic exploration



Helps understanding of factors affecting 
seismic resolution

Valuable tool for survey planning and 
image interpretation

Acquisition Modelling



New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise



Azimuthal Anisotropy (HTI)

V1 = V2
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Azimuthal velocity variation

Flatness = 1 - VMIN  / VMAX



Azimuthal velocity example
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10% Azimuthal anisotropy



ACARP Project C17029 

Acquire a 3D Multi-Component Data Set with the 
aim of imaging a shallow (~100m) coal target

Assess the complexities of processing the 
converted-wave (PS) volume

Assess degree of image variation due to ray-
azimuth in the  P and  PS volumes



ACARP Project C17029 



Legend
2D P Survey
Source Lines
Receiver Lines
Possible Fault
Target depth:         70-120m
Target Thickness:  5m
Source:                  Vibroseis
Line Spacing:         30m
Rec Stn Spacing:   15m
Src Stn Spacing:    30m
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Test Swath – P-Wave Volume



Test Swath – P-Wave Volume



P-Wave Ray-Azimuth Volumes
20-40 Degrees 180-200 Degrees



P-Wave Ray-Azimuth Volumes
260-280 Degrees 340-360 Degrees



P-Wave azimuthal velocity analysis

3500 m/s

2200 m/s
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P-wave azimuthal velocity analysis
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P-wave ellipse fitting



30m bins

P-wave velocity ellipses



P-wave velocity ellipses

30m bins



P-wave velocity ellipses

60m bins



f = 0.06
f = 17 °

60m bins

Global P-wave velocity ellipse



Average P-wave azimuthal anisotropy

Magnitude = 6 %
Fast Azimuth = 17 °
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Comparison of P and S azimuthal 
analyses

S:
10.5 %
 99 °

P: 
6 %
17 °



ACARP Trial:  Conclusions

P-wave azimuthal anisotropy

 Averaged anisotropy 6% 
 VMAX  perpendicular to thrust fault
 Consistent with maximum stress direction



ACARP Trial: Conclusions

S-wave azimuthal anisotropy

 Averaged anisotropy 10.5% 
 Greater variability in orientation
 Average VMAX-S  perpendicular to 
VMAX-P



ACARP Trial: Conclusions

 Evidence that P and S anisotropy respond to 
different elements of the geological fabric.

 P-wave responding to maximum stress / 
micro-fractures

 S-wave responding to features perpendicular 
to maximum stress (shale foliation, 
jointing ...)



Production 3D 
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Central Bowen 
Basin

15 square km
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Production 3D: Conclusions

 Consistent patterns of anisotropy across the 
survey area

 P-wave anisotropy up to 10 %
 Appears to be a relationship to faulting
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Traditional “Noise” Removal

● Refractions – Top Mute

● Surface waves – FK Filtering

● Multiples – Predictive Deconvolution

● PS & S Waves – NMO, FK Filtering, EWD

● Random Noise – TFD Noise Filter, CDP Stacking



  



  

Refraction & Surface-Wave “Noise” 

● Tend to “image” near-surface structures

● How could near-surface information be utilised?

● Improved statics calculations leading to 
improved reflection data.

● Identification of Lox zones.

● Engineering/rock competency information for 
infrastructure placement or site development.



  



  



  



  



  

Ground Roll - Method
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Survey Parameters

ExplorationEngineering

Natural 
Frequency

>10Hz<10Hz 

Spacing

Number

Far offset

Near offset

100-400m30-100m 

2-5m10-30m

50-3002-50

~4-10m~0.25-3m 



  

Dispersion Analysis



  

Dispersion Analysis



  

Dispersion Analysis
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Geophone Spacing - 1m



  

Geophone Spacing - 4m



  

Geophone Spacing - 8m



  

Geophone Spacing - 16m



  

Max Offset - 300m



  

Max Offset - 100m



  

Max Offset - 30m



  

“Random” Noise – Microseismic

● Present in all seismic surveys.

● Often a mixture of random and coherent noise.

● Don't require costly source equipment.

● Requires long recording times.



  

“Random” Noise – Microseismic



  

“Random” Noise – Microseismic

Nolan, J.J. et. al. 2013



  

“Random” Noise – Microseismic

Nolan, J.J. et. al. 2013



  

S-waves
P-wavesS-waves

● Slower than P-waves: events occur a different 
times on seismic records.

● Geology presents in different ways on P-wave and 
S-wave data.

● Usually acquired via multicomponent surveys.



  

Multicomponent Receivers

Traditional 3C Geophone



  

Multicomponent Receivers

Traditional 3C Geophone MEMS 3C Geophone



  

Multicomponent Survey Layout
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Reflected Waves vs Converted Waves

Reflected S-Waves Converted  Waves (PS)

S Wave
P Wave

Raypath Symmetric Asymmetric

Source S wave P wave

Advantage
Easier to process

Greater separation of events
Less attenuation
Easier to acquire



  

Sources

Impulsive

Correlation Microseismics

S-wave sources 



  

Imaging Shallow Structures – P-wave Stack



  

Imaging Shallow Structures – PS-wave Stack



Why Multicomponent? – Geology Identification
Gamma (Vp/Vs)

MacFarlane & Davis (2015)
Anadarko Petroleum Corporation.
Colorado School of Mines.

Gamma analysis from the Montony 
Formation, Alberta

Larger values (red) suggest regions of 
higher fracture density

Gamma analysis (colours) for heavy oil reservoirs 

Yellow (low Vp/Vs) indicate sand rich zones  

Stewart (2009)
University of Houston, University of 
Calgary.



  

Why Multicomponent? – Geology Identification
Gamma (Vp/Vs)

Gamma analysis to determine interburden strength for mine safety. 



Why Multicomponent? – Fracture Identification
(S-wave splitting)

Crampin (1997)
Department of Geology and 
Geophysics, University of Edinburgh

MacFarlane & Davis (2015)
Anadarko Petroleum Corporation.
Colorado School of Mines.

Shear-wave splitting analysis from the 
Montony Formation, Alberta



Why Multicomponent? – Structural Interpretation

PP time slice of 3D volume

Blackfoot 3D3C Survey

PS time slice of 3D volume
(channel easier to ID)

Stewart et al. (1999)
The CREWES Project, University of Calgary



  

Future – Full Waveform Inversion?
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Full Waveform Inversion

Travel-time tomography

Acoustic Inversion

Elastic Inversion

Anisotropic Elastic Inversion

Viscoelastic Inversion

Anisotropic Viscoelastic Inversion

Broadband Anisotropic Viscoelastic 
Inversion

Increasing:  

➔Detail

➔Computational effort

➔Cost

➔Non uniqueness



  

Seismic “Noise” Conclusions
●“Noise” is a significant percentage of the energy 
on a seismic record

●Includes:
●Refractions
●Surface waves
●S-waves & Converted waves
●Multiples
●“Random” Noise



  

Seismic “Noise” Conclusions
●Refractions & Surface waves can provide added 
information about the near surface.
●Useful for site development and resource estimate.

●S-waves provide extra information about the 
geological properties of the earth.

●Full waveform inversion has the potential to use all 
the energy of a seismic record but is extremely 
computationally expensive at this stage.
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Further Reading
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