BBS 2015 Workshop

New developments in coal seismology

Shaun Strong & Steve Hearn

BBS 2015 Workshop

New developments in coal seismology

This file contains a subset of images used in the workshop presentation. It is not intended as a standalone document.

The document is intended solely as a personal reference for attendees at BBS2015. Please do not distribute this document, or use images in any other context.

New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise

New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise

Seismic Resolution

Desirable frequency characteristics

broad bandwidth

stable pulse

Bowen Basin Model

Seismic Section

Real seismic exploration

Seismic

Stacked Image

Many Shot Records

"Acquisition Modelling"

Acquisition modelling example

Distance (m)

Barren-zone modelling

Barren-zone modelling

Vibroseis (10-200 Hz)

Vibroseis (10-250 Hz)

Vibroseis (10-350 Hz)

Dynamite

Dynamite

Acquisition modelling as an interpretational aid

Model 1 – Geological model

2km

Model 1 – Finite Difference Record

Model 1 – Processed Section

Thursday 11am

Seismic Geophysics B

Shaun Strong

Applications of finite-difference modelling to coal-scale seismic exploration

Acquisition Modelling

Helps understanding of factors affecting seismic resolution

Valuable tool for survey planning and image interpretation

New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise

Azimuthal Anisotropy (HTI)

V1 ≠ V2

Azimuthal Anisotropy (HTI)

V1 > V2

Maximum horizontal stress

V1 > V2

Azimuthal velocity variation

Flatness = 1 - VMIN / VMAX

Azimuthal velocity example

10% Azimuthal anisotropy

ACARP Project C17029

•Acquire a 3D Multi-Component Data Set with the aim of imaging a shallow (~100m) coal target

•Assess the complexities of processing the converted-wave (PS) volume

•Assess degree of image variation due to rayazimuth in the P and PS volumes
ACARP Project C17029

Test Swath – P-Wave Volume

Test Swath – P-Wave Volume

P-Wave Ray-Azimuth Volumes 20-40 Degrees 180-200 Degrees

P-Wave Ray-Azimuth Volumes 260-280 Degrees 340-360 Degrees

P-Wave azimuthal velocity analysis

P-wave azimuthal velocity analysis

P-wave azimuthal velocity analysis

P-wave velocity ellipses

Global P-wave velocity ellipse

f = 0.06 $\phi = 17^{\circ}$

Average P-wave azimuthal anisotropy

Magnitude = 6 % Fast Azimuth = 17 °

Average P-wave azimuthal anisotropy SH 340 320 300 Magnitude = 6 % 28/ Fast Azimuth = 17 ° Station 180 160

140

120

Comparison of P and S azimuthal analyses

ACARP Trial: Conclusions

P-wave azimuthal anisotropy

- Averaged anisotropy 6%
- · VMAX perpendicular to thrust fault
- Consistent with maximum stress direction

ACARP Trial: Conclusions

S-wave azimuthal anisotropy

- · Averaged anisotropy 10.5%
- Greater variability in orientation
- Average VMAX-S perpendicular to VMAX-P

ACARP Trial: Conclusions

- Evidence that P and S anisotropy respond to different elements of the geological fabric.
- P-wave responding to maximum stress / micro-fractures
- S-wave responding to features perpendicular to maximum stress (shale foliation, jointing ...)

Production 3D Mini-SOSIE

Central Bowen Basin

15 square km

Production 3D Mini-SOSIE

Central Bowen Basin

P-wave Anisotropy

Production 3D: Conclusions

- Consistent patterns of anisotropy across the survey area
- P-wave anisotropy up to 10 %
- · Appears to be a relationship to faulting

New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise

Integrated Seismic Technologies

Seismic Record

Traditional "Noise" Removal

- Refractions Top Mute
- Surface waves FK Filtering
- Multiples Predictive Deconvolution
- PS & S Waves NMO, FK Filtering, EWD
- Random Noise TFD Noise Filter, CDP Stacking

Refraction & Surface-Wave "Noise"

- Tend to "image" near-surface structures
- How could near-surface information be utilised?
 - Improved statics calculations leading to improved reflection data.
 - Identification of Lox zones.
 - Engineering/rock competency information for infrastructure placement or site development.

Refractions

Advantages:

- Strong energy.
- Often first arrival on the seismic record.
- Already a useful tool that has more potential.
Refractions - Tomography

- Usually the strongest event when using surface sources.
- Have a dispersive ("ringy") nature.
- Dispersive behaviour dominated by S-wave properties.

Ground Roll - Method

Ground Roll - Method

Ground Roll - Method

Survey Parameters

	Engineering	Exploration
Natural Frequency	<10Hz	>10Hz
Spacing	~0.25-3m	~4-10m
Number	2-50	50-300
Near offset	10-30m	2-5m
Far offset	30-100m	100-400m

Dispersion Analysis

Dispersion Analysis

Geophone Spacing - 1m

Geophone Spacing - 4m

Geophone Spacing - 8m

Geophone Spacing - 16m

Max Offset - 300m

Max Offset - 100m

Max Offset - 30m

- Present in all seismic surveys.
- Often a mixture of random and coherent noise.
- Don't require costly source equipment.
- Requires long recording times.

Nolan, J.J. et. al. 2013

Nolan, J.J. et. al. 2013

- Slower than P-waves: events occur a different times on seismic records.
- Geology presents in different ways on P-wave and S-wave data.
- Usually acquired via multicomponent surveys.

Multicomponent Receivers

Traditional 3C Geophone

Multicomponent Receivers

Traditional 3C Geophone

MEMS 3C Geophone

Multicomponent Survey Layout

Receiver line direction

Reflected Waves vs Converted Waves

Raypath	Symmetric	Asymmetric
Source	S wave	P wave
Advantage	Easier to process Greater separation of events	Less attenuation Easier to acquire

Impulsive

Sources

Correlation

S-wave sources

Imaging Shallow Structures – P-wave Stack

Imaging Shallow Structures – PS-wave Stack

Why Multicomponent? – Geology Identification Gamma (Vp/Vs)

Gamma analysis from the Montony Formation, Alberta

Larger values (red) suggest regions of higher fracture density MacFarlane & Davis (2015) Anadarko Petroleum Corporation.

Colorado School of Mines.

Gamma analysis (colours) for heavy oil reservoirs

Yellow (low Vp/Vs) indicate sand rich zones

Stewart (2009) University of Houston, University of Calgary.

Why Multicomponent? – Geology Identification Gamma (Vp/Vs)

Gamma analysis to determine interburden strength for mine safety.

Why Multicomponent? – Fracture Identification (S-wave splitting)

Crampin (1997) Department of Geology and Geophysics, University of Edinburgh

MacFarlane & Davis (2015) Anadarko Petroleum Corporation. Colorado School of Mines.

Why Multicomponent? – Structural Interpretation

Blackfoot 3D3C Survey

160

PS time slice of 3D volume 100 120 140

Stewart et al. (1999) The CREWES Project, University of Calgary

Increasing:

→Detail

→Computational effort→Cost

→Non uniqueness

Broadband Anisotropic Viscoelastic Inversion

Anisotropic Viscoelastic Inversion

Viscoelastic Inversion

Anisotropic Elastic Inversion

Elastic Inversion

Full Waveform Inversion

Acoustic Inversion

Travel-time tomography

Seismic "Noise" Conclusions

- "Noise" is a significant percentage of the energy on a seismic record
- Includes:
 - Refractions
 - Surface waves
 - S-waves & Converted waves
 - Multiples
 - "Random" Noise
Seismic "Noise" Conclusions

- •Refractions & Surface waves can provide added information about the near surface.
 - •Useful for site development and resource estimate.
- •S-waves provide extra information about the geological properties of the earth.
- •Full waveform inversion has the potential to use all the energy of a seismic record but is extremely computationally expensive at this stage.

New developments in coal seismology

Acquisition modelling of seismic resolution

Seismic anisotropy and stress prediction

Exploitation of seismic noise

Integrated Seismic Technologies

Further Reading

- Crampin, S, (1997) Going APE I Modeling the inherent anisotropy of intact rock. SEG Technical Program Expanded Abstracts 1997. January 1997, 952-955
- Gaiser J., Strudley A., 2005, Acquisition and application of multicomponent vector wavefields: are they practical?, First Break volume 23, 2005
- Hendrick N., (Velseis), 2007, Integrated P-wave/PS-wave seismic imaging for improved geological characterisation of coal environments, ACARP Project C13029.
- Hoffe B.H., Bland H.C., Margrave G.F., Manning P.M., 1999, Analysis of the effectiveness of 3-C receiver arrays for converted wave imaging, SEG Abstracts 1999.
- Kendall R., 2006, Advances in Land Multicomponent Seismic: Acquisition, Processing and Interpretation. CSEG Recorder 2006.
- MacFarlane T.L., Davis T.L., 2015, Fracture characterization of the Montney Formation using amplitude inversion of converted wave seismic, First Break volume 33, 2015
- Nolan, J. J., Miller, R., Ivanov, J., Peterie, S., & Lindgren, E. (2013). Near-Surface Salt Dissolution Void Identification Using Passive MASW. In 2013 SEG Annual Meeting. Society of Exploration Geophysicists.
- Stewart R.R., 2009, The measure of full-wave motion: An overview of multicomponent seismic exploration and its value. CSEG Recorder 2009.
- Stewart R.R., Gaiser J.E., Brown R.J., Lawton D.C., 1999, Converted-wave seismic exploration: a tutorial, CREWES Research Report, 11.

Strong S., Hearn S., (Velseis), 2011, Towards 3D, integrated P+PS seismic imaging of coal targets, ACARP Project C17029.